
eMaterials 1. More comprehensive overview of basics of causal inference 

Under the influential potential outcome framework proposed by Rubin1, the causal effect 

of an exposure on an outcome is defined as follows: 

𝐸[𝑌𝑎 − 𝑌𝑎∗
] 

where 𝑎 and 𝑎∗ are the different levels of an exposure A, and 𝑌𝑎is a potential outcome under 𝐴 =

𝑎 (i.e., the value of outcome that would have been observed had the person received A=a, 

potentially contrary to the fact). In this paper, we will focus on a binary treatment. That is, we 

will discuss the PS methods as a tool for estimating 𝐸[𝑌𝑎=1 − 𝑌𝑎=0], where 𝑎 = 1 and 𝑎 = 0 

indicate being exposed and unexposed, respectively. Causal effects can be defined for categorical 

and failure-time outcomes and in the relative scale (e.g., risk ratio for a binary outcome).  

The fundamental challenge in causal inference is that observed data contains only one of 

the two potential outcomes (i.e., 𝑌𝑎=1for the exposed individuals with 𝐴 = 1 and 𝑌𝑎=0for the 

unexposed individuals with 𝐴 = 0). The other potential outcome is missing and never observed 

simultaneously for the same individual (i.e., 𝑌𝑎=1for the unexposed individuals with 𝐴 = 0 and 

𝑌𝑎=0for the exposed individuals with 𝐴 = 1). The goal of causal inference is to make inferences 

about the unobservable causal effect using statistical associations with a series of (often 

unverifiable) assumptions. By simplifying the guideline proposed previously2, we will divide 

causal inference into the following three steps; 1) specifying causal estimand, 2) causal 

identification, and 3) estimation. For each step, we will briefly review its role and discuss what 

assumptions and decisions need to be made. 



Step 1. Specifying causal estimand 

The first step of causal inference involves defining a causal effect of interest that we wish 

to estimate (causal estimand). In other words, we need to specify what questions we aim to 

answer using the causal inference framework. Determining causal estimand requires 

specification of a target population for inference (i.e., a group of people for which we want to 

estimate the exposure effect). The key ingredient to consider in determining a target population 

is whether the goal of an analysis is to estimate an effect among everyone in the population that 

the study sample represents vs. its sub-populations. Imagine we collected data from a nationally 

representative sample. We could use this data to estimate an exposure effect of interest among 

everyone in the sample and the population it represents (i.e., 𝐸[𝑌𝑎=1 − 𝑌𝑎=0]; the difference 

between expected outcomes had everyone in the country been exposed vs. unexposed). This 

effect in the entire population is called a marginal effect (a.k.a., average treatment effect; ATE). 

We could also estimate the effect among men and women, separately (i.e.,  𝐸[𝑌𝑎=1 −

𝑌𝑎=0|𝑔𝑒𝑛𝑑𝑒𝑟 =  𝑚𝑒𝑛] and 𝐸[𝑌𝑎=1 − 𝑌𝑎=0|𝑔𝑒𝑛𝑑𝑒𝑟 =  𝑤𝑜𝑚𝑒𝑛]). These gender-specific 

effects are defined for the sub-populations conditional on one’s gender and, hence, called 

conditional effects. Marginal effects and conditional effects may or may not differ in size. When 

the conditional effects differ by gender (i.e., effect modification by gender), marginal effects will 

diverge from the conditional effects.3,4 Because different analytic methods estimate either 

marginal or conditional effects or both, it is crucial to decide which effect is more of substantive 

interest before selecting an analytic approach. 

Step 2. Identification 

Once we define a target causal estimand, we need to consider what assumptions are 

required to link the unobservable causal effect of interest to observable statistical associations 



and whether the assumptions hold with the data at hand. This process is called causal 

identification. There are three key assumptions for identification: exchangeability, consistency, 

and positivity.5  

Exchangeability 

(Marginal) exchangeability assumption, 𝑌𝑎⫫ A (a = 0, 1), implies that the treated vs. the 

untreated share equal distributions of outcome predictors and would have the same outcomes if 

their exposure levels were the same. In observational studies, however, the exposed group 

generally have different backgrounds than the unexposed group do (a.k.a. confounding and 

selection bias, depending on the causal structure that led to the differential distributions of the 

background factors) and, hence, marginal exchangeability is unlikely to hold.6–8  

One may feel more confident that the groups are exchangeable conditional on some 

covariates (i.e., within strata of the combinations of covariate values). For example, the exposed 

and the unexposed may not be exchangeable in the entire study sample because of confounding 

by age. Yet, the two groups may become exchangeable if they were compared among people of 

the same age. Such condition is called conditional exchangeability, 𝑌𝑎⫫ A|L (a = 0, 1), and the 

core of causal inference from observational data. This assumption is also called “no unmeasured 

confounding assumption” or “ignorability” in literature.7 Any causal inference methods based on 

confounding adjustment rely on the assumption that the observed L suffices to achieve 

conditional exchangeability. Approaches to select such a set of L have been discussed 

elsewhere.9,10 These approaches’ critical implication is that the selection of covariates requires 

subject-matter knowledge of the underlying causal structure for the exposure-outcome 

relationship in question and cannot be done solely by statistical and data-driven approaches.11  



Consistency and Positivity 

Two other identifiability assumptions — consistency and positivity — often gain less 

attention than exchangeability but are central in causal inference too. First, the consistency 

assumption, 𝑌𝑎 = 𝑌𝐴 = 𝑌 𝑤ℎ𝑒𝑛 𝐴 = 𝑎, pertains to an exposure’s definition and 

operationalization. This assumption means that one’s potential outcome under the level of 

exposure they received (𝑌𝑎  𝑤ℎ𝑒𝑛 𝐴 = 𝑎) is equal to their observed outcome (𝑌𝐴 = 𝑌). This 

seemingly obvious assumption does not hold when exposure is ill-defined and has multiple 

“versions” that might have different impacts on outcomes. With multiple versions of an exposure 

A, causal inference is not intuitive because the corresponding potential outcome 𝑌𝑎 will be ill-

defined too. Accessible introduction of this assumption is available elsewhere.12,13 

 Second, the positivity assumption pertains to the distribution of exposure in the target 

population and the data at hand. Positivity requires that,  for all possible combinations of 

covariates in the population, the probability of being exposed must be strictly between 0 and 1. 

More informally, positivity means that both exposed and unexposed individuals need to be 

present in all sub-populations defined by the combinations of covariate values.14 In practice, 

positivity violation can occur empirically when there are too many covariates relative to the 

sample size or when the covariate set contains a continuous variable. That is, for a finite sample, 

some covariate strata may end up consisting of all exposed or unexposed individuals by chance 

as the number of the covariate value combinations increases. We will discuss later how the PS 

methods address such positivity violations differently.  

Linking potential outcomes to observed data 

 The causal estimand specified in Step 1 becomes a function of conditional expectation 

and/or probabilities that can statistically be estimated from observed data under the three 



identifiability assumptions from Step 2. Depending on the causal estimand and analytic 

approach, different quantities will need to be estimated. For example, a conditional effect among 

individuals with 𝐿 = 𝑙, 𝐸[𝑌𝑎=1 − 𝑌𝑎=0|𝐿 = 𝑙], will be identified as the difference in two 

conditional expectations of the outcome (𝐸[𝑌|𝐴 = 1, 𝐿 = 𝑙] − 𝐸[𝑌|𝐴 = 0, 𝐿 = 𝑙]), assuming 

conditional exchangeability given 𝐿, consistency, and positivity. As we will discuss later, causal 

identification via the PS methods instead requires estimating conditional probabilities of 

exposure given L. Once we identify the conditional expectations needed to quantify the causal 

effects of interest, the remaining task is to estimate these values from the observed data.  

Step 3. Estimation 

With only a few covariate patterns to consider, conditional expectations and probabilities 

can be estimated simply by computing stratum-specific averages. However, conditioning in 

causal inference (e.g., adjustment for observed confounders) generally involves numerous 

variables, some of which are continuous. Thus, the number of possible combinations of covariate 

values is substantially large, making it often impossible to manually estimate stratum-specific 

averages with a finite sample. 

Conditional expectations and probabilities with many possible strata can be estimated by 

specifying statistical models, which is essentially what regression models do. For example, 

consider the following regression model.  

𝐸[𝑌|𝐴, 𝐿] = 𝛽0 + 𝛽1𝐴 + 𝐿𝛽′ 

In this model, 𝛽1 corresponds to 𝐸[𝑌|𝐴 = 1, 𝐿 = 𝑙] − 𝐸[𝑌|𝐴 = 0, 𝐿 = 𝑙], the conditional effect 

of the exposure A within the strata defined by L under the identifiability assumptions. 

Statistical models allow the estimation of high-dimensional conditional expectations by 

making a series of modeling assumptions (e.g., linearity between a continuous covariate and 



outcome, and no effect modification by covariates represented by omitted product terms). When 

the modeling assumptions do not hold (model misspecification), estimated conditional 

expectations would be generally biased. Note that these are statistical assumptions and distinct 

from the identifiability assumptions we discussed in Step 2. Unbiased estimates of conditional 

expectations from correctly specified models will not have causal interpretation unless the 

identifiability assumptions hold.  

The methods for causal inference, including the PS methods, generally make different 

modeling assumptions because they use different conditional expectations and probabilities to 

quantify a causal effect of interest. Thus, to understand the differences between the PS methods, 

it is crucial to be mindful of the statistical models that each analytic approach involves and their 

underlying assumptions. 

  



eMaterials 2. R and SAS code for multivariable regression, standardization, and alternative PS 

methods 

We provide a sample code to implement the PS methods in R and SAS using the simulated data. 

In this example, we used the following R packages: 

library(tidyverse) 

library(broom) 

library(gtsummary) 

library(MatchIt) 

library(geepack) 

library(boot) 

The simulated data was generated by the R code shown below. 

set.seed(0) 

n.obs = 10000   #set sample size 

 

#---- True parameters in outcome model ---- 

b0 = 60                   

b1 = 5                       

b2 = -0.3                    

b3 = -0.1               

b4 = 8                  

b5 = 3                   

b6 = 2                     

 

#---- True parameters in exposure odds model ---- 

g0 = log(0.20/(1-0.20))  

g1 = log(1.01)             

g2 = log(1.005)         

g3 = log(0.6)            

g4 = log(0.5)            

g5 = log(0.8) 



 

#Function to compute outcome values 

## Use the parameters specified above 

mean_out <- function(C1, C2, C3, exposure){ 

  b0 + b1*exposure + b2*C1 + b3*I(C1^2) + b4*C2 + b5*C3 + b6*exposure*C2 + rn

orm(n = n.obs, mean = 0, sd = 5) 

} 

 

#Function to compute exposure probabilities 

## Use the parameters specified above 

prob_exp <- function(C1, C2, C3){ 

  exp(g0 + g1*C1 + g2*I(C1^2) + g3*C2 + g4*C3 + g5*C2*C3)/(1 + exp(g0 + g1*C1

 + g2*I(C1^2) + g3*C2 + g4*C3 + g5*C2*C3)) 

} 

 

#Simulate the data 

df.sim <- tibble("ID" = seq(from = 1, to = n.obs, by = 1),  

                 "C1" = rnorm(n  = n.obs, mean = 0, sd = 5),   

                 "C2" = rbinom(n = n.obs, size = 1, p = 0.4),  

                 "C3" = rbinom(n  = n.obs, size = 1, p = 0.3), 

                 "Pexposure" = prob_exp(C1, C2, C3),            

                 "Exposure" = rbinom(n = n.obs, size = 1,     

                                        prob = Pexposure),   

                 "Outcome" = as.numeric(mean_out(C1,C2,C3, Exposure)))  

In this simulated data, A is exposure, C1 is a continuous covariate, and C2 and C3 are binary 

covariates.  

The true outcome model is specified as follows: 

 

 

The true propensity model is specified as follows: 

 



True causal effect of exposure A among those with C2 = 0 is . True causal effect of 

exposure A among those with C2 = 1 is . The marginal effect is 

 because 40% of the total population has C2 = 1. 

Multivariable regression 

 # Correctly specified model 

df.sim %>%  

  lm(Outcome ~ Exposure*C2 + C1 + I(C1^2) + C3, data = .) %>% 

  tidy(conf.int = TRUE) 

The estimate for Exposure is 5.02. Note that this is an estimate of the conditional effect for C2 = 

0 and it is identical to the true value  because the model is correctly specified. The 

conditional effect for C2 = 1 is estimated to be 5.02 + 1.93 = 6.95, which again is nearly identical 

to the true parameter . 

## # A tibble: 7 x 7 

##   term        estimate std.error statistic   p.value conf.low conf.high 

##   <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl> 

## 1 (Intercept)   60.0     0.0875      686.       0.        59.8     60.2    

## 2 Exposure       5.02    0.166       30.2    4.61e-192    4.69     5.34   

## 3 C2             8.10    0.112       72.4       0.        7.88     8.32   

## 4 C1            -0.305   0.0101     -30.1    2.49e-190   -0.324   -0.285  

## 5 I(C1^2)       -0.100   0.00148    -67.8       0.      -0.103   -0.0972 

## 6 C3             2.94    0.111       26.5    4.31e-150    2.72     3.16   

## 7 Exposure:C2    1.93    0.294       6.56    5.77e- 11    1.35     2.51 

The misspecified model assuming the linearity for C1 and no interaction between the exposure 

and C2 yields the biased estimate for exposure effect of 4.88. 

# Misspecified model 

df.sim %>%  



  lm(Outcome ~ Exposure + C1 + C2 + C3,  

                     data = .) %>% 

  tidy(conf.int = TRUE, exp = TRUE) 

 

## # A tibble: 5 x 7 

##   term        estimate std.error statistic   p.value conf.low conf.high 

##   <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl> 

## 1 (Intercept)   57.6      0.0954     604.  0.          57.4      57.8   

## 2 Exposure       4.88     0.167       29.3 6.26e-181    4.55      5.20  

## 3 C1            -0.312    0.0123     -25.4 1.79e-138   -0.336    -0.288 

## 4 C2             8.26     0.125       65.9 0.           8.01      8.50  

## 5 C3             2.90     0.134       21.6 3.64e-101    2.63      3.16 

Standardization (a.k.a., g-formula/g-computation) 

One can standardize the conditional effect estimates from the correctly specified multivariable 

regression model to get an estimate of a marginal effect. 

# Make copies of original data 

df.sim.a1 <- df.sim %>% 

  mutate(Outcome  = NA, 

         Exposure = 1) #Assign Exposure = 1 to everyone 

 

df.sim.a0 <- df.sim %>% 

  mutate(Outcome  = NA, 

         Exposure = 0) #Assign Exposure = 0 to everyone 

 

df.sim.combined <- 

  bind_rows(df.sim.a1,df.sim.a0)  

 

# Fit an outcome model to the original data 

## Correctly specified model 



gcomp.fit <- df.sim %>%  

  lm(Outcome ~ Exposure*C2 + C1 + I(C1^2) + C3, data = .) 

 

# Predict outcome values using the copied datasets 

df.sim.combined$pred <- predict(gcomp.fit, newdata = df.sim.combined) 

 

# ATE Estimate: Difference between mean predicted values for rows with A=1 and m
ean predicted values for rows with A = 0 

df.sim.combined %>%  

  group_by(Exposure) %>%  

  summarise( 

    mean.Y = mean(pred) 

  ) %>%  

  pivot_wider( 

    names_from = Exposure, 

    names_glue = "mean.Y.{Exposure}", 

    values_from = mean.Y 

  ) %>%  

  mutate( 

    ATE = mean.Y.1-mean.Y.0 

  ) 

The resulting estimate of a marginal effect is 5.78 — this is a consistent estimate of the true 

marginal effect of 5.8. 

## # A tibble: 1 x 3 

##   mean.Y.0 mean.Y.1   ATE 

##      <dbl>    <dbl> <dbl> 

## 1     61.6     67.4  5.78 

Confidence intervals for the standardized estimate can be obtained via bootstrapping. 

standardization.boot <- function(data, indices){ 

  df <- data[indices,]  

  df.a1 <- df %>% 



  mutate(Outcome  = NA, 

         Exposure = 1) 

 

  df.a0 <- df %>% 

    mutate(Outcome  = NA, 

           Exposure = 0) 

   

  df.combined <- 

    bind_rows(df.a1,df.a0)  

   

  gcomp.fit <- df %>%  

    lm(Outcome ~ Exposure*C2 + C1 + I(C1^2) + C3, data = .) 

  df.combined$pred <- predict(gcomp.fit, newdata = df.combined) 

  output <- df.combined %>%  

    group_by(Exposure) %>%  

    summarise( 

      mean.Y = mean(pred) 

    ) %>%  

    pivot_wider( 

      names_from = Exposure, 

      names_glue = "mean.Y.{Exposure}", 

      values_from = mean.Y 

    ) %>%  

    mutate( 

      ATE = mean.Y.1-mean.Y.0 

    ) 

  return(output$ATE) 

} 

 

# bootstrap 

standardization.results <- boot(data=df.sim, statistic=standardization.boot, 

R=100) # 100 bootstrapped samples 

 

# generating confidence intervals 



empirical.se <- sd(standardization.results$t) # get empirical standard error 

estimate 

estimate <- standardization.results$t0 

ll <- estimate - qnorm(0.975)*empirical.se # normal approximation 

ul <- estimate + qnorm(0.975)*empirical.se 

 

data.frame(cbind(estimate, empirical.se, ll, ul)) 

 

##   estimate empirical.se       ll       ul 

## 1 5.782279    0.1428676 5.502264 6.062294 

Propensity Score Estimation 

# Fit a propensity model 

## Correct model 

PS.fit.correct <-  

  df.sim %>%  

  glm(Exposure ~ C1 + I(C1^2) + C2*C3, family = "binomial", data=.) 

## Misspecified model 

PS.fit.misspecified <-  

  df.sim %>%  

  glm(Exposure ~ C1 + C2 + C3, family = "binomial", data=.) 

 

# Estimate PS 

df.sim$PS.correct <-  

  predict(PS.fit.correct, type = "response") 

 

df.sim$PS.misspecified <-  

  predict(PS.fit.misspecified, type = "response") 



 

PS Method 1: Propensity Score Stratification 

Using deciles, we estimate ten stratum-specific effect estimates. Assuming no effect measure 

modification by PS strata, the ATE estimate is the average of the stratum-specific estimates 

(=5.65). 

 

df.sim %>%  

  mutate(PS.correct.strata = gtools::quantcut(PS.correct, 10)) %>% #deciles 

  group_by(Exposure,PS.correct.strata) %>% #group by exposure levels and PS strata 

  summarise(mean.Y = mean(Outcome)) %>% #calculate group-specific outcome means 

  pivot_wider( # convert to wide format 

    names_from = Exposure, 

    names_glue = "mean.Y.{Exposure}", 

    values_from = mean.Y 

  ) %>%  

  mutate(  

    ATE.strata = mean.Y.1-mean.Y.0, # Calculate stratum-specific ATEs 

    ATE = mean(ATE.strata) # Overall ATE = Average of stratum-specific ATEs 

  ) 

 

## # A tibble: 10 x 5 

##    PS.correct.strata mean.Y.0 mean.Y.1 ATE.strata   ATE 

##    <fct>                <dbl>    <dbl>      <dbl> <dbl> 

##  1 [0.0554,0.0729]       69.8     76.9       7.09  5.65 

##  2 (0.0729,0.106]        62.7     68.5       5.87  5.65 

##  3 (0.106,0.129]         63.0     67.8       4.81  5.65 

##  4 (0.129,0.135]         67.2     74.6       7.45  5.65 

##  5 (0.135,0.155]         65.1     71.7       6.60  5.65 

##  6 (0.155,0.198]         60.5     66.0       5.44  5.65 

##  7 (0.198,0.202]         59.9     64.9       5.08  5.65 

##  8 (0.202,0.212]         58.8     64.1       5.31  5.65 

##  9 (0.212,0.235]         57.4     62.3       4.88  5.65 



## 10 (0.235,0.608]         51.9     55.9       3.99  5.65 

PS Method 2: Propensity Score Regression Adjustment 

 

Using PS regression adjustment, the effect estimate was 5.63. Note that this model assumes 

linearity for the estimated PS (PS.correct) in the outcome model and also no effect measure 

modification by PS.correct. 

 

df.sim %>%  

  lm(Outcome ~ Exposure + PS.correct, data=.) %>%  

  tidy() 

 

## # A tibble: 3 x 5 

##   term        estimate std.error statistic   p.value 

##   <chr>          <dbl>     <dbl>     <dbl>     <dbl> 

## 1 (Intercept)    73.8      0.159      463.       0.        

## 2 Exposure        5.63     0.161      34.9    6.81e-252 

## 3 PS.correct    -74.2      0.914     -81.1       0. 

 

PS Method 3: Propensity Score Matching 

We used nearest neighbor matching with caliper width of 0.2 SD of PS in the logit scale. We also 

show the code to compare standardized mean differences to check covariate balance after 

matching. 

fit.match <- matchit(Exposure ~ C1 + I(C1^2) + C2*C3, method = "nearest",cali

per = 0.2, distance = "linear.logit", data=df.sim) 

 

df.matched <- match.data(fit.match) # Create a matched sample 

 



# Check covariate balance via standardized mean differences 

df.smd <- summary(fit.match,standardize = TRUE) 

df.smd.p <- rbind( 

  df.smd$sum.all %>% as.data.frame() %>% mutate(term = rownames(.)) %>% mutat

e(Sample = "All"), 

  df.smd$sum.matched %>% as.data.frame() %>% mutate(term = rownames(.)) %>% m

utate(Sample = "Matched") 

) 

df.smd.p %>%  

  ggplot(aes(x = `Std. Mean Diff.`, y = term, color = Sample)) + 

  geom_point(size = 2) + 

  geom_vline(xintercept = 0) + 

  theme_bw(base_family = "serif") + 

  labs(x = "Standardized Mean Difference", y = "") 

 
 

df.matched %>%  

  lm(Outcome ~ Exposure, data=.) %>%  

  tidy() 



The estimated effect was 5.69. This is slightly different from the true ATE (=5.8), partly because 

the inferential target is now changed to the population that the matched sample represents, not 

the original population. 

## # A tibble: 2 x 5 

##   term        estimate std.error statistic  p.value 

##   <chr>          <dbl>     <dbl>     <dbl>    <dbl> 

## 1 (Intercept)    59.6      0.195     305.  0.       

## 2 Exposure        5.69     0.276      20.6 7.56e-89 

Using the misspecified propensity model that assumes the linearity for C1 and no interaction 

between C2 and C3 yields the biased estimate for exposure effect of 5.33. 

fit.match <- matchit(Exposure ~ C1 +  C2 + C3, method = "nearest",caliper = 

0.2, distance = "linear.logit",data=df.sim) 

 

df.matched <- match.data(fit.match) 

 

df.smd <- summary(fit.match,standardize = TRUE) 

df.smd.p <- rbind( 

  df.smd$sum.all %>% as.data.frame() %>% mutate(term = rownames(.)) %>% mutat

e(Sample = "All"), 

  df.smd$sum.matched %>% as.data.frame() %>% mutate(term = rownames(.)) %>% m

utate(Sample = "Matched") 

) 

df.smd.p %>%  

  ggplot(aes(x = `Std. Mean Diff.`, y = term, color = Sample)) + 

  geom_point(size = 2) + 

  geom_vline(xintercept = 0) + 

  theme_bw(base_family = "serif") + 

  labs(x = "Standardized Mean Difference", y = "") 



 

df.matched %>%  

  lm(Outcome ~ Exposure, data=.) %>%  

  tidy() 

 

## # A tibble: 2 x 5 

##   term        estimate std.error statistic  p.value 

##   <chr>          <dbl>     <dbl>     <dbl>    <dbl> 

## 1 (Intercept)    60.0      0.196     306.  0.       

## 2 Exposure        5.33     0.277      19.2 2.56e-78 



 

 

PS Method 4: Inverse Probability Weighting 

df.sim <- df.sim %>%  

  mutate(ustw = ifelse(Exposure == 1, 

                       1/PS.correct, #Denomenator = PS when Exposure =1 

                       1/(1-PS.correct))) #Denomenator = 1- PS when Exposure 

= 0 

 

# specify MSM 

df.sim %>%  

  geeglm(Outcome ~ Exposure, weights = ustw, data=.,id = ID) %>% #We used GEE to
 adjust for standard errors 

  tidy() 

Using the generalized estimating equation to correct the standard error estimate for correlated 

data, the estimated ATE was 5.83. 

## # A tibble: 2 x 5 

##   term        estimate std.error statistic p.value 

##   <chr>          <dbl>     <dbl>     <dbl>   <dbl> 

## 1 (Intercept)    61.6     0.0847   528318.       0 

## 2 Exposure        5.83    0.240       590.       0 

Alternatively, bootstrapping can be used to obtain a valid standard error estimate. 

ipw.boot <- function(data, indices){ 

  df <- data[indices,]  

  df <- df %>%  

    mutate(ustw = ifelse(Exposure == 1, 

                         1/PS.correct,  

                         1/(1-PS.correct)))  

   

  # fit MSM 



  output <- df %>%  

    lm(Outcome ~ Exposure, weights = ustw, data=.)  

  return(output$coefficients[2]) # extract point estimate for Exposure 

} 

 

# bootstrap 

ipw.results <- boot(data=df.sim, statistic=ipw.boot, R=100) # 100 bootstrappe

d samples 

 

# generating confidence intervals 

empirical.se <- sd(ipw.results$t) # get empirical standard error estimate 

estimate <- ipw.results$t0 

ll <- estimate - qnorm(0.975)*empirical.se # normal approximation 

ul <- estimate + qnorm(0.975)*empirical.se 

 

data.frame(cbind(estimate, empirical.se, ll, ul)) 

 

##          estimate empirical.se       ll       ul 

## Exposure 5.832164    0.2568622 5.328724 6.335605 

When a propensity model is misspecified, the ATE estimate from IPW was biased (= 5.12). 

df.sim <- df.sim %>%  

  mutate(ustw.misspecified = ifelse(Exposure == 1, 

                       1/PS.misspecified, #Denomenator = PS when Exposure =1 

                       1/(1-PS.misspecified))) #Denomenator = 1- PS when Expo

sure = 0 

 

# fit MSM 

df.sim %>%  

  geeglm(Outcome ~ Exposure, weights = ustw.misspecified, data=.,id = ID) %>%

 #We used GEE to adjust for standard errors 

  tidy() 

 



## # A tibble: 2 x 5 

##   term        estimate std.error statistic p.value 

##   <chr>          <dbl>     <dbl>     <dbl>   <dbl> 

## 1 (Intercept)    61.7     0.0817   570320.       0 

## 2 Exposure        5.12    0.241       451.       0 

SAS code to implement the same analyses for the same simulated dataset is shown below. Note 

that the results may not be perfectly identical the two languages perform slightly different 

calculations internally. 

/*Multivariable regression*/ 

proc glm; 

 model outcome = exposure c2 c1 c1*c1 c3 exposure*c2 / solution; 

run; quit; 

proc glm ; 

 model outcome = exposure c1 c2 c3 / solution; 

run; quit; 

 

/*Standardization (a.k.a., g-formula/g-computation)*/ 

*Note: PROC CAUSALTRT fits separate models for exposure = 0 and 1; 

proc causaltrt method=regadj; 

 psmodel exposure(ref='0'); 

 model outcome = c1 c1*c1 c2 c3; 

 bootstrap bootci; 

run; 

 

/*Propensity Score Estimation*/ 

proc logistic data=sim; 

 model exposure(event='1') = c1 c1*c1 c2 c3 c2*c3 ; 

 output out=sim_ps p = pshat; 

run; 

 

/*PS Method 1: Propensity Score Stratification*/ 

proc psmatch data=sim region=allobs; 

 class exposure; 

 psmodel exposure(treated='1') = c1 c1*c1 c2 c3 c2*c3; 

 strata nstrata=10 key=total; 

 assess ps var=(outcome) / varinfo; 

run; 

 

/*PS Method 2: Propensity Score Regression Adjustment*/ 

proc glm data=sim_ps; 

 model outcome = exposure pshat / solution; 

run; quit; 



 

/*PS Method 3: Propensity Score Matching*/ 

proc psmatch data=sim; 

 class exposure; 

 psmodel exposure(treated='1') = c1 c1*c1 c2 c3 c2*c3; 

 match distance = lps method = greedy (k=1) caliper = 0.2; 

 assess ps var=(c1 c2 c3 outcome) / varinfo stddev = pooled ; 

 output out(obs=match) = sim_matched matchid = _MatchID; 

run; 

proc psmatch data=sim; 

 class exposure; 

 psmodel exposure(treated='1') = c1 c2 c3; 

 match distance = lps method = greedy (k=1) caliper = 0.2; 

 assess ps var=(c1 c2 c3 outcome) / varinfo stddev = pooled ; 

 output out(obs=match) = sim_matched matchid = _MatchID; 

run; 

 

/*PS Method 4: Inverse Probability Weighting*/ 

proc causaltrt data=sim method = ipw covdiffps; 

 class exposure c2 c3; 

 psmodel exposure(event='1') = c1 c1*c1 c2 c3 c2*c3 / plots=(psdist 

pscovden); 

 outcome outcome;  

 bootstrap bootci; 

run; 

proc causaltrt data=sim method = ipw covdiffps; 

 class exposure c2 c3; 

 psmodel exposure(event='1') = c1 c2 c3 / plots=(psdist pscovden); 

 outcome outcome;  

 bootstrap bootci; 

run; 

 

  



eMaterials 3. Overview of propensity score stratification and regression adjustment 

Stratification 

Stratification involves grouping subjects into strata with similar values of estimated PS 

(e.g., quintiles).15 The simple comparison of the average outcomes among the exposed vs. the 

unexposed within each PS stratum,𝑆𝑝𝑠, estimates the stratum-specific conditional effects: 

 𝐸[𝑌𝑎=1 − 𝑌𝑎=0 | 𝑆𝑝𝑠]  

Two critical points merit attention. First, the estimated stratum-specific conditional 

exposure effects may differ in size when effect modification by the PS strata is present. The 

marginal effect can be estimated as a weighted average of the stratum-specific conditional effect 

estimates with the weights being the proportions of individuals in each stratum to the entire study 

sample. Second, the PS stratification assumes conditional exchangeability holds given the PS 

“strata.” That is, the estimated PS values within each stratum need to be “similar enough” so that 

conditioning on the strata approximates conditioning the PS themselves.16  

Determining the optimal number of the PS strata requires considering a bias-variance 

trade-off. If the number of PS strata is too small, PS can be widely distributed within each 

stratum. Consequently, even within the same PS stratum, the exposed and unexposed individuals 

may have differential distributions of PS and, hence, observed confounders (bias). In contrast, 

increasing the number of strata may better adjust for confounding, but using too many strata can 

result in small stratum-specific sample sizes and imprecise estimates (large variance).16  

Regression adjustment 

The estimated PS can also be used as a single adjustment variable in the outcome 

regression analysis.17,18 For example, one may specify the following outcome model: 



𝐸[𝑌|𝐴, 𝑃𝑆] = 𝛾0 + 𝛾1𝐴 + 𝛾2𝑃𝑆   

In this model, 𝛾1corresponds to 𝐸[𝑌|𝐴 = 1, 𝑃𝑆] − 𝐸[𝑌|𝐴 = 0, 𝑃𝑆], which is the conditional 

effect 𝐸[𝑌𝑎=1 − 𝑌𝑎=0 | 𝑃𝑆] (i.e., the exposure effect among individuals with identical PS) under 

the identifiability assumptions.  

There are two distinctions worth highlighting between PS regression adjustment and PS 

stratification. First, PS regression adjustment estimates conditional outcome expectations given 

PS themselves while the PS stratification estimates conditional outcome expectations given PS 

“strata.” Thus, regression adjustment is not prone to residual confounding bias that crude 

stratification may suffer. Second, while PS stratification only involves propensity model 

specification, the regression adjustment approach also specifies the outcome model conditional 

on PS. Thus, PS regression adjustment makes additional modeling assumptions (e.g., linearity 

for PS and effect homogeneity by omitting product terms between A and PS). 

  



eMaterials 4. Comparison of propensity score stratification, regression adjustment, matching, 

and inverse probability weighting 

 In the main text, we focused on PSM and IPW. We provide comparisons with those 

methods with other two PS-based methods (i.e., stratification and regression adjustment). The 

discussion points are summarized in eTable 1. 

 

 

1. The PS methods rely on the same assumptions for exchangeability and consistency but 

deal with the positivity assumption differently 

The four PS methods all rely on the same identifiability assumptions of conditional 

exchangeability and consistency. In contrast, the PS methods all assume positivity conditional on 

PS but take different approaches to handle potential positivity violations. PS stratification makes 

positivity violations conditional on the PS “strata” explicit by assessing whether each PS stratum 

contains observations from both exposed and unexposed individuals. Positivity given the PS 

strata allows non-parametric estimation of causal effects after PS estimation even if positivity 

violations given PS does not strictly hold. However, this feature of PS stratification comes at cost 

of potential residual confounding due to crude PS strata. Regression adjustment uses model 

extrapolation in estimating conditional expectations although the positivity violations can at least 

partly be mitigated by trimming observations with extreme PS values. In IPW, individuals will 

receive substantially large or small weights when their covariate patterns potentially violate 

positivity. Trimming such observations with extreme weights is often recommended.19 Lastly, 

PSM explicitly addresses potential positivity violations by excluding those who have extreme PS 

values and, thus, cannot be matched (so-called “off-support” individuals). While such explicit 

handling of positivity violations is the advantage of the PS methods, one caveat is that causal 



estimand of interest generally changes after excluding individuals who potentially violate 

positivity.20  

 

2. Although the PS methods make the same exchangeability assumption, some methods 

suffer from residual confounding 

The four PS methods are all based on the same conditional exchangeability (i.e., no 

confounding conditional on measured covariates). However, PS stratification does not fully 

eliminate bias by the measured covariates, especially when strata are crude. Similarly, PSM may 

result in an insufficient balance of the measured covariates when the pre-specified caliper is 

wide. On the other hand, PS regression adjustment and IPW do not suffer from residual 

confounding, assuming the models involved are correctly specified. 

 

3. The PS methods make different modeling assumptions after propensity score estimation 

All PS methods specify a propensity model to estimate PS. Stratification and PSM often 

do not require any further modeling once PS is estimated. In contrast, regression adjustment 

specifies an outcome model conditional on PS and makes extra modeling assumptions (e.g., 

linearity for PS). IPW also specifies a weighted outcome model to approximate a marginal 

structural model, but the outcome model tends to make fewer assumptions than it does in PS 

regression adjustment or even be saturated (no modeling assumption) when estimating the 

marginal effect of a single-point binary exposure. 

 

4. The PS methods target different causal estimands (i.e., each method answers a different 

research question) 



The alternative PS methods often target different causal estimands.20–22 In other words, 

when an effect estimate from one PS method differs from an estimate from another PS method, 

they can both be correct but simply answer different questions. Stratification estimates the PS 

strata-specific effects, which can be standardized over the PS strata distribution to estimate a 

marginal effect. Regression adjustment technically estimates conditional effects given PS but 

often produces a single effect estimate by assuming effect homogeneity (no product term 

between exposure and PS). Combining PS regression adjustment with standardization can more 

flexibly estimate a marginal effect but has rarely been done in practice. PSM estimates a 

marginal effect in a population represented by a matched sample. Because the matched sample 

excludes individuals with extreme PS values, PSM does not estimate an exposure effect among 

individuals who would always or never be exposed unless they were intervened and forced to 

have an alternative exposure level. PSM often uses all exposed individuals and matches them 

with their unexposed pairs. This approach will estimate an exposure effect among the people 

who were in fact exposed (i.e., average treatment effect in the treated [ATT]).23 IPW can 

estimate both marginal and conditional effects, depending on the definition of weights and 

specification of a marginal structural model. 



eTable 1. Comparison of alternative analytic methods by the underlying assumptions 
Analytic 

Approach 

Features 

Causal Estimand Identifiability Assumptions Model Specifications 

Multivariable 

Regression 
• Conditional effects within the 

covariate strata 

• Marginal effect assuming no effect 

modification by any of the measured 
covariates 

• Conditional exchangeability based on 

the covariates used in the PS estimation 

• Potential residual confounding due to 

crude strata 

• Consistency for the exposure of interest 

• Positivity violation if only exposed or 

unexposed individuals are present in the 
PS stratum 

• Propensity model for 

probabilities of being exposed 
conditional on measured 

covariates. 

PS Stratification • Conditional effects within the PS 

strata 

• Marginal effect as a weighted average 

of the PS stratum-specific conditional 

effects 

• Conditional exchangeability based on 

the covariates used in the PS estimation 

• Potential residual confounding due to 

crude strata 

• Consistency for the exposure of interest 

• Positivity violation if only exposed or 

unexposed individuals are present in the 

PS stratum 

• Propensity model for 

probabilities of being exposed 

conditional on measured 
covariates. 

PS Regression 

Adjustment 
• Conditional effects for individuals 

with an identical PS value 

• Marginal effect assuming no effect 
modification by PS. 

• Conditional exchangeability based on 

the covariates used in the PS estimation 

• Consistency for the exposure of interest 

• Positivity violation is addressed via 

model extrapolation with modeling 
assumptions. 

• Propensity model for 

probabilities of being exposed 
conditional on measured 

covariates. 

• Outcome model conditional on 

an exposure and estimated PS 

PS Matching • Marginal effect in the population 

represented by the matched sample, 

which excludes individuals with 
extreme PS values from the original 

sample. 

• Conditional exchangeability based on 

the covariates used in the PS estimation 

• Potential residual confounding due to 

wide caliper distance 

• Consistency for the exposure of interest 

• Positivity is ensured by excluding 

unmatched individuals. 

• Propensity model for 

probabilities of being exposed 

conditional on measured 
covariates. 

• Outcome model can be used 

after matching with caution. 

IPW • Conditional effects by including an 

additional covariate in the weighted 

outcome model 

• Marginal effect in the original 
population 

• Conditional exchangeability based on 

the covariates used in the PS estimation 

• Consistency for the exposure of interest 

• Potential positivity violation is detected 

as extremely large or small weights, 

which can be discarded before 
weighting. 

• Propensity model for 

probabilities of being exposed 

conditional on measured 
covariates. 

• IP-weighted outcome model 

conditional on exposure (and an 

additional covariate if estimating 
conditional effects). 

IPW, inverse probability weighting; PS, propensity score. 
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